

SublimeGit Documentation

SublimeGit is a full-featured Git plugin for Sublime Text 2. It has been developed to be easy to get started with. If you’re used to Git and dealing with Sublime Text packages, you can probably just install SublimeGit, and get right to work.

If installing Sublime Text packages, or using Git, is new to you, the Quickstart is a great place to start. It will get you set up, so you can go on to the tutorial.

Note

This documentation assumes some familiarity with Git. If you are not familiar with Git, be sure to check out the More Information section which contain links to a couple of resources for learning Git.

Contents

	Quickstart
	Prerequisites

	Installation

	Configuration

	Adding a License

	Using SublimeGit

	Tutorial
	Getting Set Up

	Initialize a Repository

	Adding Content

	Committing

	Staging Changes

	Sharing Our Project With the World

	Branching

	Stashing

	Finding Help

	Commands Reference
	Creating and Switching Repositories

	Status

	Diffs

	Blame

	Adding files

	Checking out files

	Committing

	Logs

	Branching and Merging

	Working with Remotes

	Fetching and Pulling

	Pushing

	Stashing

	Tags

	Custom Commands

	Browsing Documentation

	SublimeGit

	Gitk

	Plugins
	Le-git

	Gitflow

	Keyboard Shortcuts
	Status View

	Blame View

	Diff View

	Customizations
	Custom Commands

	Keyboard Shortcuts

	Color Scheme

	Troubleshooting
	SublimeGit Can’t Find Git

	Nothing Happens When Pushing, Pulling or Fetching From a Remote

	The Output From Git Commands Look Weird (ANSI Escape Codes)

	More Information
	Git

	Git-flow

	Sublime Text 2

Indices and tables

	Index

	Search Page

Quickstart

Prerequisites

Sublime Text 2 or 3

Needless to say, Sublime Text is required to use SublimeGit. Any version of Sublime Text 2 or 3 should work.

Git

SublimeGit uses the Git command line interface, so you will need a recent version of Git. SublimeGit has been tested on Git 1.8+. To download a version of Git for your operating system, go to http://git-scm.com/downloads. If you are currently using version 1.7 or lower, some commands probably won’t work.

You should make sure that git is accesible on your path. You can do this by running git --version in your terminal:

$ git --version
git version 1.8

Note

If you start Sublime Text from the terminal (e.g. using the subl command on OS X) your path inside Sublime Text might be different from the path you get if you start Sublime Text by clicking on the application.

To see your current path in Sublime Text, open up the console by selecting View > Show Console and execute the following python snippet:

import os; print os.getenv('PATH')

To verify that you have access to the Git executable from within Sublime Text, you can execute the following snippet, which will print 0 if everything worked as expected:

import os; os.system('git --version')

If this returns anything other than 0 you might need to explicitly set the path to your git executable. See the section Git Executable Path for information on how to do this.

Git Configuration

For the moment, SublimeGit assumes that you have your environment set up so that commands working with remotes (e.g. pull, push and fetch) does not need to ask for user authentication. If that’s not the case, and git asks for your username and password when pushing or pulling, then you will need to follow one of these fixes to make sure SublimeGit runs smoothly:

	SSH remotes:

	When using SSH remotes with private keys which use passphrases, git will ask for the passphrase to authenticate. There is a safe way to make sure the passphrase is saved, and GitHub has a great guide to using it: https://help.github.com/articles/working-with-ssh-key-passphrases

	HTTPS remotes:

	If you prefer HTTPS checkouts, then you will need to follow this guide: https://help.github.com/articles/set-up-git#password-caching

Warning

It seems there can be some problems on Windows, especially when using git-bash and/or private keys with passphrases. For more information, and possible solution please see Nothing Happens When Pushing, Pulling or Fetching From a Remote

Installation

There are many ways to install a package in Sublime Text, but we strongly recommend the use of Package Control [http://wbond.net/sublime_packages/package_control], which makes it easy to install and uninstall packages, as well as automatically keeping them up to date. If you are not already using it, you should give it a try.

Using Package Control

	Open the Command Palette using shift+command+p (OS X) or shift+ctrl+p (Windows/Linux) or by selecting Tools > Command Palette from the menu bar.

	Find and select the command Package Control: Install Package.

	Find and select SublimeGit.

	Restart Sublime Text.

Note

When you select the Install Packages command, it might take a little while for the list of packages to show up. You should be able to see that Package Control is working by watching the spinner in the lower left corner of the window.

Installing From Package

	Download the SublimeGit.zip file from https://release.sublimegit.net/SublimeGit.zip.

	Unzip the package inside your Sublime Text package directory.
	Windows: %APPDATA%Sublime Text 2Packages

	OS X: ~/Library/Application Support/Sublime Text 2/Packages

	Linux: ~/.config/sublime-text-2/Packages

	Restart Sublime Text.

Note

Note: If you are unsure where your Sublime Text package directory is, or it is hidden, you can browse to it by selecting Preferences > Browse Packages from within Sublime Text.

Configuration

SublimeGit comes with sensible defaults, so if you don’t need to add a license, and you can execute the command Git: Version, you can skip straight to the Tutorial.

Git Executable Path

To open the default settings for SublimeGit, go to Preferences > Package Settings > SublimeGit > Settings - Default. This will show the default settings for SublimeGit. But do not edit this file! Instead, open up Preferences > Package Settings > SublimeGit > Settings - User and copy over any settings you wish to change.

If git is not on your path, and it’s not possible for you to put git on your path (such as in a very controlled environment where you don’t have administrator rights), then you can change the git_executables settings to point directly at your git installation.

Be sure to copy the entire thing into your Settings - User file, and change the paths accordingly. Be aware that each item in the list will be quoted on its own.

After performing these changes, your user settings might look like this:

{
 "git_executables": {
 "git": ["/usr/local/bin/git"],
 "git_flow": ["/usr/local/bin/git", "flow"],
 "legit": ["legit"]
 }
}

If you don’t use the extensions, there is no need to change their paths.

Enabling or Disabling Plugins

If you don’t use a plugin, it might be annoying that its commands keep showing up. Change the git_extensions setting to get rid of them. After disabling git-flow, your local settings file would look like this:

{
 "git_extensions": {
 "git_flow": false,
 "legit": true
 }
}

Adding a License

If you decide to buy a license, the email you receive will contain information on how to install it. There are two ways to do it, depending on how comfortable you are with Sublime Text. Also, we love You.

Automatic

Run the command SublimeGit: Add License and follow the instructions. Almost couldn’t be easier!

Manual

Simply add the following to your SublimeGit User Settings file:

"email": "MY_EMAIL",
"product_key": "MY_LICENSE_KEY"

Replacing MY_EMAIL and MY_LICENSE_KEY with the correct values. If you’ve lost your license, send us an email at support@sublimegit.net and we’ll get you sorted out.

Note

To find the correct settings file, navigate to Preferences > Package Settings > SublimeGit > Settings - User

Using SublimeGit

Once you’re all set up you should jump head-first into the Tutorial, which will take you through some basics on using SublimeGit.

Alternatively, you can jump straight to the Commands Reference.

Tutorial

This tutorial will take you through the usual stages of using SublimeGit for managing a project. We will go through building the Django tutorial [https://docs.djangoproject.com/en/1.5/intro/tutorial01/] application, and managing it in git. We’ll be skipping lightly over the coding parts and focusing on using SublimeGit, so it should be usable for any project using git.

Getting Set Up

The first thing we’ve done is made a virtual environment, set up a requirements.txt, installed django and initialized a django project. That means our project folder now looks something like this:

[image: _images/tutorial01.png]

Initialize a Repository

Now, there isn’t much work worth saving in this project yet, but we’re gonna start adding some, so now might be a good time to put the project in git.

To do this, first make sure that you have the project open in Sublime Text. It doesn’t need to be opened as a Sublime Text project, and personally I prefer to just open folders directly from the command line, or through the File > Open... menu.

Note

Notice how we’ve opened the entire folder in Sublime Text. This isn’t required, but it will make initializing the git repository much smoother, since SublimeGit will have an easier time figuring out where to put it.

See the Git: Init command for more information on how SublimeGit chooses a path for the repo.

To initialize the git repository, open the command palette, and find the Git: Init command. But wait a minute. You don’t want to be typing out full command names for everything. Luckily, Sublime Text is pretty intelligent about matching commands, so to find the Git: Init command, we should just be able to start typing. Generally, all of the commands in SublimeGit start with the Git: prefix, so let’s try just typing ginit.

[image: _images/tutorial02.png]
Once we’re at gin, Sublime Text should have selected the right command. Now press enter, and you will be presented with a choice of where to put the repository on the bottom of the screen:

[image: _images/tutorial03.png]
If you’ve opened our project as a folder, then the default value should be sufficient, and you can press enter to select it. After creating the git repository, SublimeGit will show you the output of the git command in a console window:

[image: _images/tutorial04.png]
To dismiss this console window, press escape.

Note

Another way to initialize a repository is to just start using the Git: Status command. If you aren’t on a repository, SublimeGit will ask you to initialize one.

Adding Content

So now that we have an empty repository, we can start adding our files.

Warning

Using SublimeGit to perform the initial commit on a huge project (1000+ files) might not be the best way to go. Getting the list of untracked files from git, and formatting them nicely can take some time.

If you are dealing with a huge project, you might want to use the command line for the initial commit.

The Status View

Most of the adding/staging/unstaging and so on happens from the Git: Status command, so let’s run that. Typing gs in the command palette should be sufficient to bring it up:

[image: _images/tutorial05.png]
After executing the command, we should see a status view looking something like this:

[image: _images/tutorial06.png]
This view contains the following information for our new project:

	Local

	Information on our current branch (master), and the location of our repository (~/Desktop/djangotut)

	Head

	Info about the current HEAD commit. Since we haven’t committed anything yet, there is nothing to show. After our first commit, we will be able to see the abbreviated SHA1, and the first line of the commit message.

	Untracked files

	This section shows files inside our project which have yet to be added to git. When we get a little further, some more sections will show up, such as unstaged changes, staged changes and stashes.

	Help

	The bottom of the view shows the available keyboard shortcuts.

Ignoring Files

Now, looking at our status view, we notice that we’ve got those pesky .pyc files. We definitely don’t want to add those to git, so let’s ignore them.

Pressing i on a file will add that file to the .gitignore for the repository. But we don’t want to add just a single .pyc file, we want to add the pattern *.pyc so we don’t have to deal with them again. Pressing I (capital I) will give you a choice of the pattern to add to the gitignore:

[image: _images/tutorial07.png]
Now, let’s change the pattern to *.pyc:

[image: _images/tutorial08.png]
Pressing enter will ask you to confirm your choice, and after doing so, we can see that the .pyc files have been removed from the status view, and a gitignore file have been added:

[image: _images/tutorial10.png]

Adding Files

Now, to add the files, there are several different ways to go.

We can press s on each file individually, and allow the status window to update between each press. If we don’t want to wait for the status window to update, we can also select all of the files we’d like to add, and then press s. Or we could use Sublime Text’s awesome multiple caret feature and place a caret on every line before pressing s. This will add all of the files, since SublimeGit supports multiple selection.

Another way to go would be placing the caret on the section header and pressing s.

Finally, we could press ctrl+shift+s which will add everything. This command can result in a lot of changes, which is why it’s purposefully been made a little hard to type.

Let’s go with placing the cursor on the section and pressing s:

[image: _images/tutorial11.png]
Pressing s moves the files to the Staged changes section:

[image: _images/tutorial14.png]
Now we are ready to make the initial commit on our project.

Other Ways to Add Files

Using the status view isn’t the only way to add files in SublimeGit. See Adding files in the Commands Reference for alternatives.

Committing

To enter the commit view, press c in the status view. This will bring op a view for you to enter a commit message, and place the caret so that you can start typing right away:

[image: _images/tutorial12.png]

Note

This view contains a vertical ruler set at 72 characters. This is to encourage good commit message style, as detailed by Tim Pope [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html] and Linus Thorvalds [https://github.com/torvalds/subsurface/blob/master/README#L272] among others.

If you write your commit messages like this, other developers will nod their head in quiet approval, a thousand adorable kittens will be saved, and riches will rain from the sky. Also, you’ll get a nice git log, and pretty commit messages on github.

So let’s type our commit message:

[image: _images/tutorial13.png]
Once we’re done with typing, closing the view will perform the commit and notify us in a console panel:

[image: _images/tutorial15.png]
We can now see that our Head information has been updated, and that the working directory is clean.

Aborting a Commit

What if we change our mind halfway through writing the commit message? At that point closing the file would commit a half-finished commit. The solution is simple. Just delete the commit message. This can be done by selecting everything (cmd+a on OS X, ctrl+a on Linux/Windows) followed by delete.

Closing an empty commit view will abort the commit, and let you know:

[image: _images/tutorial14.png]

Staging Changes

So now that we’ve made our initial commit, let’s make some more changes to the project.

After changing the settings around and adding a polls app, the status view now looks like this:

[image: _images/tutorial16.png]
Since we are actually doing two separate things here we might want to split it up into two commits, one containing the changes to settings.py and the other containing our initial polls app.

But first, let’s take a look at what we’ve actually changed.

Viewing Diffs

Navigate to the Changes section. A quick way to do this is by pressing 2 to jump to the second section, followed by n for next item. Another way would be by pressing Nn for next section followed by next file.

[image: _images/tutorial17.png]
Once the caret is over the file, press d to open a diff view:

[image: _images/tutorial18.png]
As we can see here, we’ve changed the database settings, the timezone, as well as enabled the admin application.

While viewing this diff, we realize that we probably need to add a template directory as well. So let’s close the diff view, and open the file to add the template directory.

Opening a File

Back in the status view, the caret should still be on the settings file. Pressing enter will open the file for editing:

[image: _images/tutorial19.png]
After adding the missing setting, we can view a diff again to see that the change has been picked up:

[image: _images/tutorial20.png]
Now we’re ready to commit. To do so, press s on the file, followed by c to open the commit view.

Unstaging Files

For the second commit, let’s start by adding the polls application exactly as before:

[image: _images/tutorial21.png]
But what if we want to do a little bit of work on it before adding it the first time? Now we’ve already staged it, so we need a way to undo that.

For that purpose, we can use u to unstage single files or entire sections, or U to unstage everything. This works exactly like the s/S commands described earlier.

Let’s use the U command since that will unstage everything at once. Press U anywhere in the status view. The files will then jump back to the Untracked Files section:

[image: _images/tutorial22.png]

Sharing Our Project With the World

Now that we’re getting some traction on our project, we might want to start sharing it with the world. To do that we’ve created a github (or bitbucket, or google code, or breanstalk, etc.) repository for it. In our case it has the url git@github.com:SublimeGit/djangotut.git.

Adding a Remote

To add this remote, execute the command Git: Add Remote, again using Sublime Text’s fuzzy matching to avoid typing all of it:

[image: _images/tutorial23.png]
After selecting the command, we will be asked to provide a name for the remote. If this is the first remote we are adding, SublimeGit will assume we want to name it origin since that’s the convention:

[image: _images/tutorial24.png]
After pressing enter to confirm the name, we will be asked to add the url of the remote:

[image: _images/tutorial26.png]
When the url is confirmed, SublimeGit will open the remote management interface. This is the same options you will get if you execute the Git: Remote command.

Pushing

Note

If you added a remote which wasn’t empty (such as when initilized with a README through github), you might need to execute the Git: Pull command before pushing.

Now, if we try to just execute Git: Push we might be in for a surprise:

[image: _images/tutorial28.png]
What gives? Well, since we’ve only just added the remote, without specifying it as the default remote for any of the branches, we need to push a little bit differently the first time around.

To do this, execute the command Git: Push Current Branch:

[image: _images/tutorial29.png]
Then we have to enter the name of the branch on the remote. By default, the current branch name is selected:

[image: _images/tutorial30.png]
After pressing enter, SublimeGit will push the branch to the remote, as well as set the necessary configuration to allow using the Git: Push and Git: Pull commands in the future:

[image: _images/tutorial31.png]
Also notice how a remote section shows up in the status view. This shows the remote url, and the name of the remote.

Branching

See the section Branching and Merging in the Commands Reference.

Stashing

See the section Stashing in the Commands Reference.

Finding Help

To find help on a specific git command, you can use the Git: Help command, which uses the built-in git html documentation.

Further Reading

While this tutorial covers the most important parts of SublimeGit, there is a lot more to explore. Take a look at the Commands Reference for a list of all the available commands, or have a look at the Plugins section for information on how to use the SublimeGit plugins.

Commands Reference

Creating and Switching Repositories

	
Git: Init

	Initializes a git repository in a specified directory.

An input panel will be shown in the bottom of the Sublime Text
window, allowing you to edit the directory which will be initialized
as a git repository. After choosing the directory, press enter
to complete. To abort, press esc.

If the directory does not already exist, you will be asked if you
want to create it. If the path already exists, but it is not a
directory, or if it is a directory and already contains git repository,
the command will exit with an error message.

Note

The initial suggestion for the directory is calculated in the
following way:

	The first open folder, if any.

	The directory name of the currently active file, if any.

	The directory name of the first open file which has a filename,
if any.

	The user directory of the currently logged in user.

	
Git: Switch Repo

	Switch the active repository for the current Sublime Text window.

In SublimeGit, each window has an active repository. The first time
you execute a git command, SublimeGit will try to find out which
repository should be the active one for the current window. If there
are multiple possible repositories, you will be presented with a list
to choose from. Your selection will then be set as the active repository
for the window.

If you generally only have one folder open per window in Sublime
Text and don’t use git submodules, then you probably won’t have
to switch repositories manually. However, there are some situations
where it can be necessary to do so:

	Nested git repositories

	If you are using git submodules, or some kind of package manager
which uses git checkouts in a subfolder of your project to hold
packages (such as Composer for PHP), and you want to explicitly
specify that you are working inside the nested repository.

	Multiple folders or files

	If you have multiple folders or multiple files, which are managed
with git, open in the same Sublime Text window, and you want to
switch the repository that you are currently working on.

Note

How does SublimeGit find my repositories?

Excellent question. SublimeGit will try it’s best to guess which
repository you are working on. In general it works something like
this:

	Find the currently active file.
	Is it a git view? Use that repository.

	Is any of the parents a git repository? Use that.

	If that fails, find the currently active window.
	Find a list of all possible directories:
	The directories of any open folders.

	The directories of any open files.

	Generate a list of all of the parents of these directories.

	Check to see if any of the directories or their parents are
git repositories.

	Select a repository:
	If there is only one repository then use that.

	If there are more than one repository, present a list to
choose from.

Status

	
Git: Status

	Documentation coming soon.

	
Git: Quick Status

	Show an abbreviated status in the quick bar.

As an alternative to the full status window, a list of changed files is presented
the quick bar. Next to each filename there is an abbreviation, denoting the files
status.

This status contains 2 characters, X and Y. For paths with merge conflicts, X and Y show the
modification states of each side of the merge. For paths that do not have merge conflicts,
X shows the status of the index, and Y shows the status of the work tree.

The statuses are as follows:

	‘ ‘ = unmodified

	M = modified

	A = added

	D = deleted

	R = renamed

	C = copied

	U = updated but unmerged

	? = untracked

Selecting an entry in the list will bring up a diff view of the file.

Diffs

	
Git: Diff

	Shows a diff of the entire repository in a diff view.

This diff is between the worktree and the index. Thus, these are the
changes that you could ask git to add to the next commit.

For diff on a single file, either use the Git: Quick Status command,
or press d when the cursor is on a file in the status view.

	
Git: Diff Cached

	Shows the cached diff for the entire repository in a diff view.

The difference between this command and the Git: Diff command is
that this command shows the difference between the staged changes (the changes
in the index), and the HEAD. I.e. these are changes which you could tell git
to unstage.

For diff on a single file, either use the Git: Quick Status command,
or press d when the cursor is on a file in the status view.

Blame

	
Git: Blame

	Run git blame on the current file.

This will bring up a new window with the blame information to
the left of the file contents, on a per-line basis. Lines which
are selected when executing the commands will be marked with a dot
in the gutter. When placing the cursor on a line, the summary of
the commit will be shown in the status bar.

If the file has not been saved to the filesystem, or the file is
not tracked by git, it’s not possible to blame, and an error
will be shown.

To navigate further into the blame information, a couple of keyboard
shortcuts are available:

	enter: Show the commit in a new window (like Git: Show).

	b: Open a new blame starting at the given commit.

Note

These keyboard shortcuts support multiple selection, so you
can potentially open a lot of tabs. If your action will
open more than 5 tabs, you will get a warning asking if you
want to continue. You can turn this warning off with the
git_blame_warn_multiple_tabs setting.

	Settings:	
	git_blame_warn_multiple_tabs – If set to true, SublimeGit
will give you a warning when your action from a blame view will
open more than 5 tabs. Set to false to turn this warning off.

Adding files

	
Git: Quick Add

	Adds one or more files to the staging area by selecting them
from the quick bar.

A list of modified files are presented in the quickbar. Each
file is marked with a letter, indicating it’s status:

	M = modified

	A = added

	D = deleted

	R = renamed

	C = copied

	? = untracked

To add a file from the list, either click the file with the
mouse, or use arrow up/arrow down or searching until you have
the file you are looking for, and then press enter. After
adding a file, the status list will update, allowing you to
select another file to add. To dismiss the status list, press
esc.

When there are no more files to add, the status list will show
the usual git message for a clean working dir. To dismiss the
list press enter or esc.

There are two special options at the bottom of the status list.
To go to them quickly, press arrow up which will select the
bottom-most option. These options are:

	+ All unstaged files

	This option will add all changes to files git already knows
about (all the files not marked with ?).

	+ All files

	This option will add all changes to files git already knows
about, as well as all new files (files marked with ?).

	
Git: Add Current File

	This command adds the currently open file to the git
staging area. It the –force switch, so the file will be
added even if it matches a repository .gitignore pattern,
or a global .gitignore pattern.

The file must have already been saved, otherwise it won’t
exist on the filesystem, and can’t be added to git.

If the command completes successfully, no output will be
given.

Checking out files

	
Git: Checkout Current File

	Documentation coming soon.

Committing

	
Git: Quick Commit

	Quickly commit changes with a one-line commit message.

If there are any staged changes, only those changes will be added. If there
are no staged changes, any changed files that git know about will be added
in the commit.

If the working directory is clean, an error will be shown indicating it.

After entering the commit message, press enter to commit, or esc to cancel.
An empty commit message will also result in the commit being cancelled.

	
Git: Quick Commit Current File

	Documentation coming soon.

	
Git: Commit

	Documentation coming soon.

	
Git: Amend Commit

	Documentation coming soon.

Logs

	
Git: Log

	Documentation coming soon.

	
Git: Quick Log

	Documentation coming soon.

	
Git: Quick Log Current File

	Documentation coming soon.

	
Git: Show

	Documentation coming soon.

Branching and Merging

	
Git: Checkout

	Check out an existing branch.

This command allows you to select a branch from the quick bar
to check out. The currently active branch (if any) is marked with an
asterisk (*) to the left of its name.

	
Git: Checkout Commit

	Check out a specific commit.

This command allows you to check out a specific commit. The list
of commits will be presented in the quick bar, containing the first
line of the commit message, the abbreviated sha1, as well as a relative
and absolute date in the local timezone.

After checkout, you will be in a detached head state.

	
Git: Checkout New Branch

	Create a new branch from the current HEAD and switch to it.

This command will show an input panel allowing you to name your new
branch. After giving the branch a name, pressing enter will create
the new branch and check it out. Pressing esc will cancel.

If a branch with the given name already exists, you will be asked if
you want to overwrite the branch. Selecting cancel will exit silently,
without making any changes.

	
Git: Merge

	Documentation coming soon.

Working with Remotes

	
Git: Add Remote

	Add a named git remote at a given URL

You will be asked to provide the name and url of the remote (see below).
Press enter to select the value. If you want to cancel, press esc.

After completion, the Git: Remote command will be run, to allow for
further management of remotes.

	Name:

	The name of the remote. By convention, the name origin is used
for the “main” remote. Therefore, if your repository does not
have any remotes, the initial suggestion for the name will be origin.

	Url:

	The git url of the remote repository, in any format that git understands.

	
Git: Remote

	Manage git remotes

Presents s list of remotes, including their push and pull urls.
Select the remote to perform an action on it. After an action has
been performed, the list will show up again to allow for further
editing of remotes. To cancel, press esc.

Available actions:

	Show

	Show information about the remote. This includes the
push and pull urls, the current HEAD, the branches tracked,
and the local branches which are set up for push and pull.

The result will be displayed in a panel in the bottom of
the Sublime Text window.

	Rename

	Rename the selected remote. An input field will appear
allowing you to write a new name for the remote. If a new
name is not provided, or esc is pressed, the action
will be aborted.

	Remove

	Remove the selected remote. All remote-tracking branches,
and configuration for the remote is removed. You will be
asked for confirmation before removing the remote.

	Set URL

	Change the URL for the selected remote. An input fiels
will appear allowing you to specify a new URL. The given
URL will be used for both the push and pull URL. If a new
URL isn’t specified, or esc is pressed, the URL will
not be updated.

	Prune

	Delete all stale remote-tracking branches for the selected
remote. Any remote-tracking branches in the local repository
which are no longer in the remote repository will be removed.

Fetching and Pulling

	
Git: Fetch

	Fetches git objects from the remote repository

If there is only one remote configured, this remove will be
used for fetching. If there are multiple remotes, you will be
asked to select the remote to fetch from.

	
Git: Pull

	Documentation coming soon.

	
Git: Pull Current Branch

	Documentation coming soon.

Pushing

	
Git: Push

	Documentation coming soon.

	
Git: Push Current Branch

	Push the current branch to a remote

This is the command to use if you are pushing a branch to a remote
for the first time, or to a different remote than the configured upstream.
Will push the current branch to a specified branch on the selected remote,
creating the remote branch if it doesn’t already exist.

If there is only one remote configured, that will be used, otherwise you
will be asked to select a remote. If there are no remotes, you will be asked
to add one.

You will be asked to supply a name to use for the branch on the
remote. By default, the current branch name will be suggested.

Warning

Trying to push when in a detached head state will give an error
message. This is not generally something you want to do.

Note

This command shares a lot of similarities with the excellent
git-publish command, which can be found at
https://github.com/gavinbeatty/git-publish.

Stashing

	
Git: Stash

	Documentation coming soon.

	
Git: Pop Stash

	Documentation coming soon.

	
Git: Apply Stash

	Documentation coming soon.

	
Git: Snapshot

	Documentation coming soon.

Tags

	
Git: Tag

	Documentation coming soon.

	
Git: Add Tag

	Documentation coming soon.

Custom Commands

	
Git: Custom Command

	Execute a custom git command.

By default, this command will be run synchronously, and the output will be presented
in a new view, with a title corresponding to the command.

However, it’s also possible to use this command to build your own SublimeGit commands.

It takes 3 arguments:

	cmd: The command to execute (without the initial “git”)

	async: true to run asynchronously, false otherwise. Default: false

	output: "view" for a new buffer, "panel" for an output panel, null for no output. Default: "view"

	
	syntax: If output is set to "view", the new buffer will get this syntax file. Should be a name along the

	lines of Packages/Python/Python.tmLanguage. To see the current syntax for a view, execute
view.settings().get('syntax') from the console.

Note

See Custom Commands for more information on how to create your own SublimeGit commands.

Browsing Documentation

	
Git: Help

	Search through installed Git documentation.

Every standard install of git contains a full set of manual pages
in both text and html formats. This commands presents a list
of available documentation in a quick bar to allow for easy access.

When a document has been selected, a webbrowser will be opened to
show the help file. To abort the list without opening the document,
press esc.

	Settings:	
	git_help_fancy_list – If set to true, SublimeGit will
try to parse the help document to show a nicer list containing
a small excerpt from each document. This has a small performance
cost the first time the list is generated. Set to false to
fall back to simple format. Default: true

	git_help_html_path – If set to a directory, SublimeGit will
look in the given directory for git help files. Set to null
to make SublimeGit auto-detect the location of the help files.

Note

To find the location the installed documentation, you can
execute:

$ git --html-path
/usr/local/Cellar/git/1.7.11.3/share/doc/git-doc

	
Git: Version

	Shows the version of git which is installed

This corresponds to running:

$ git --version
git version 1.7.11.3

SublimeGit

	
SublimeGit: Version

	Show the currently installed version of SublimeGit.

	
SublimeGit: Documentation

	Open a webbrowser to the online SublimeGit documentation.

Gitk

	
Gitk

	Documentation coming soon.

Plugins

SublimeGit comes with plugins for Le-git and git-flow.

	Le-git
	Branches

	Remotes

	Gitflow
	Features

	Releases

	Hotfixes

Le-git

Branches

	
Legit: Switch

	Documentation coming soon.

	
Legit: Branches

	Documentation coming soon.

	
Legit: Sprout

	Documentation coming soon.

	
Legit: Harvest

	Documentation coming soon.

	
Legit: Graft

	Documentation coming soon.

Remotes

	
Legit: Sync

	Documentation coming soon.

	
Legit: Publish

	Documentation coming soon.

	
Legit: Unpublish

	Documentation coming soon.

Gitflow

Features

	
Git-flow: Feature Start

	Documentation coming soon.

	
Git-flow: Feature Finish

	Documentation coming soon.

Releases

	
Git-flow: Release Start

	Documentation coming soon.

	
Git-flow: Release Finish

	Documentation coming soon.

Hotfixes

	
Git-flow: Hotfix Start

	Documentation coming soon.

	
Git-flow: Hotfix Finish

	Documentation coming soon.

Keyboard Shortcuts

Status View

Movement

	r: Refresh status

	1-5: Jump to section

	n: Next item

	N: Next section

	p: Previous item

	P: Previous section

Staging

	s: Stage file/section

	S: Stage all unstaged files

	ctrl+shift+s: Stage all unstaged and untracked files

	u: Unstage file/section

	U: Unstage all files

	backspace: Discard file/section

	shift+backspace: Discard everything

Committing

	c: Commit

	C: Commit -a (add unstaged)

	ctrl+shift+c: Commit –amend (amend previous commit)

	enter: Open file

	d: View diff

Stashes

	a: Apply stash

	A: Pop stash

	z: Create stash from worktree

Blame View

	enter: Show the selected commit(s)

	b: Run blame starting from the selected commit(s)

Diff View

Movement

	n: Next hunk

	N: Next file

	p: Previous hunk

	P: Previous file

Context

	+: Increase hunk context

	-: Decrease hunk context

Staging

	s: Stage hunk

	u: Unstage hunk

Customizations

The defaults of SublimeGit are not for everyone. Here is a list of common customizations which you might or might not be right for you.

Custom Commands

By using the Git: Custom Command action in SublimeGit, you can create your own SublimeGit aliases. If you have a command that you run often, you can save it with an alias and get access to it in the Sublime Text quick bar.

To do this, we need to first cover how to set up custom commands in Sublime Text. Inside your packages directory (Go to Preferences > Browse Packages) there will be a directory called User. Inside this directory, you can place files with the extension .sublime-commands and they will be picked up by Sublime Text. In the following we’re only going to present a short example of how to use the Git: Custom Command to extend SublimeGit, but there are more fun things that can be done. For an overview of the format of these files, see the Sublime Text Docs on Command Files [http://docs.sublimetext.info/en/latest/reference/command_palette.html].

Now, create a file in the User directory and name it Git.sublime-commands. Add this to it:

[
 {
 "caption": "Git: Graph Log",
 "command": "git_custom",
 "args": {
 "cmd": "log --graph --oneline",
 "output": "panel",
 "async": false
 }
 },
 {
 "caption": "Git: Diff Master",
 "command": "git_custom",
 "args": {
 "cmd": "diff master",
 "output": "view",
 "async": true,
 "syntax": "Packages/SublimeGit/syntax/SublimeGit Diff.tmLanguage"
 }
 }
]

This tells Sublime Text that you want a command named “Git: Graph Log”, and when it is executed, Sublime Text should run the command git_custom from SublimeGit, which should in turn execute git log --graph --oneline synchronously and present the output to you in a new panel. Same goes for the “Git: Diff Master” command, except the command will be asynchronous, the output will be in a view, and the view will have the specified syntax file.

As you can see, the custom commands can take different arguments. Please see Custom Commands for possible values of these arguments.

Keyboard Shortcuts

For information on keybindings in general, please see the Sublime Text Docs [http://docs.sublimetext.info/en/latest/customization/key_bindings.html].

Run a Command (e.g. Git: Status)

If you want to figure out what a command is called, you can set Sublime Text to log all commands by executing the following snippet in the console:

sublime.log_commands(True)

After you’ve done that, all commands will then be logged to the console. Using this, you can see that the Git: Status command is called git_status.

With this information, you can add something like this to your keymap, to open git status when pressing ctrl+alt+g:

{ "keys": ["ctrl+alt+g"], "command": "git_status"}

Note

You can turn off the command logging again with:

sublime.log_commands(False)

Add a Key Binding to a Command in the Status View

Let’s say you want to have t add a tag from the status view. Naturally you don’t want this shortcut to be available everywhere (that would make it quite hard to write anything). The solution for this is specifying that the shortcut should only be available in the status view, like so:

{ "keys": ["t"], "command": "git_add_tag",
 "context": [{ "key": "selector", "operator": "equal", "operand": "text.git-status" }]
}

Jump to a Specific Section in the Status View

It is possible to jump to a specific section in the git status view, with a set of shortcuts like this:

// Section shortcuts
{ "keys": ["ctrl+1"], "command": "git_status_move", "args": {"goto": "section:stashes"},
 "context": [
 { "key": "selector", "operator": "equal", "operand": "text.git-status" }
]
},
{ "keys": ["ctrl+2"], "command": "git_status_move", "args": {"goto": "section:untracked_files"},
 "context": [
 { "key": "selector", "operator": "equal", "operand": "text.git-status" }
]
},
{ "keys": ["ctrl+3"], "command": "git_status_move", "args": {"goto": "section:unstaged_changes"},
 "context": [
 { "key": "selector", "operator": "equal", "operand": "text.git-status" }
]
},
{ "keys": ["ctrl+4"], "command": "git_status_move", "args": {"goto": "section:staged_changes"},
 "context": [
 { "key": "selector", "operator": "equal", "operand": "text.git-status" }
]
},
{ "keys": ["ctrl+5"], "command": "git_status_move", "args": {"goto": "section:unpushed_commits"},
 "context": [
 { "key": "selector", "operator": "equal", "operand": "text.git-status" }
]
}

Warning

These shortcuts will overwrite the “focus group” shortcuts built into Sublime Text.

Color Scheme

SublimeGit uses a lot of different colors. Though great care has been taken in picking the SublimeGit colors to generally look good in the default Sublime Text themes, you might want to customize them.

Setting a Different Color Scheme

If you want to use a different color scheme for some SublimeGit view altogether, you can do this by going to Preferences > Settings > More > Syntax Specific - User while having a SublimeGit view open (i.e. the status or commit view), and then adding a color scheme setting for the given syntax like so:

"color_scheme": "Packages/Color Scheme - Default/Monokai.tmTheme"

Customizing Individual Colors

A full detailing of creating a color scheme is outside the scope of this documentation. A quick googling on sublime text color schemes or textmate color schemes should bring up plenty of resources.

To find out which scope you will need to colorize, put the cursor on the text in question, and press ctrl+shift+p. This will show the scope under the cursor in the status bar.

Troubleshooting

SublimeGit Can’t Find Git

Please see Git Executable Path

Nothing Happens When Pushing, Pulling or Fetching From a Remote

Please see Git Configuration. Below you will find solutions submitted by SublimeGit users:

Solution by Albert Santini (Issue #3 [https://github.com/SublimeGit/SublimeGit/issues/3])

I configured the git bash shell on windows 7 following GitHub help to start a ssh agent, because I don’t want to type every time the passphrase for my ssh key.

I added to that configuration, in .bashrc, the following lines:

setx SSH_AUTH_SOCK $SSH_AUTH_SOCK 1> nul
setx SSH_AGENT_PID $SSH_AGENT_PID 1> nul

These lines add the environment variables to windows user profile.

So the git executable, configured in SublimeGit, can read the variables and use the correct protocol.

Firstly I start the bash shell and then I start SublimeText editor.

Now SublimeGit works perfectly.

Solution by Henry Mei (Issue #15 [https://github.com/SublimeGit/SublimeGit/issues/15])

I am outlining my workaround and hope this will be beneficial for anyone working with Windows.

It seems that SublimeGit requires credential storing for the command prompt (i.e. cmd.exe) and not Git Bash. I will assume that we’re using msysgit. Make sure Git is added to your PATH.

	Grab a copy of PuTTY, Plink, Pageant, and PuTTYgen from here and save them somewhere (e.g. I just threw them all in C:PuTTY).

	Add a system variable called GIT_SSH that points to the location of Plink (e.g. C:PuTTYplink.exe). If you’re using an older version of mysysgit, there was actually an option to use Plink instead of OpenSSH.

	Generate your public/private key pair using PuTTYgen. Be sure to secure your key by using a passphrase. You should be generating a SSH-2 RSA key of typically 1024 bits. Save the private key somewhere, and add the public key generated to the list of SSH public keys on your GitHub account (i.e. go to github.com and look in your account settings).

	Grab GitHub’s public key. Use PuTTY to SSH into github.com. If you’ve never done this before, it should pop up an alert saying that the server’s host key is not cached in the registry. Hit “Yes” to add the key to PuTTY’s cache. After doing this, exit PuTTY. We won’t be using it again.

	Run Pageant. This will create an icon in your system tray. Double click to open a window where you can add your private key. The agent will sit in the background, much like ssh-agent, and provide authentication when necessary.

Note

If you tried the OpenSSH workaround detailed here [https://help.github.com/articles/working-with-ssh-key-passphrases], you can just convert your OpenSSH private key to a PuTTY key also using PuTTYgen (the public key will be same regardless). Your OpenSSH keys will be in ~.ssh, which is %USERPROFILE%.ssh . OpenSSH public keys have the *.pub extension and private keys no extension. PuTTY private keys have the *.ppk extensions. Make sure to choose the OpenSSH private key when opening with PuTTYgen and save it as a *.ppk.

As long as Pageant is running, any git calls through the command prompt should be automatically authenticated, allowing SublimeGit to not freeze.

Pageant will default to a clean session every time it runs, but it takes key paths as parameters (i.e. pageant.exe ...). There are a few ways to make things easier. You can add the path to the keys after the target path in the Pageant shortcut (i.e. for me, this would be “C:PuTTYpageant.exe” %USERPROFILE%.sshid_rsa.ppk) or just write a batch file to make it autostart in Windows. Pageant will always prompt for the passphrases of keys you auto-load on startup.

Solution by Mario Basic (Issue #59 [https://github.com/SublimeGit/SublimeGit/issues/59])

If you are on Windows and when you try to push or pull using this plugin nothing happens or it pushes forever, You have to add a system variable to your SSH keys.

	Right-click on Computer

	Choose Properties

	Click on Advanced System Settings

	Click on Environment Variables

	In the bottom section (System Variables) Click on New

	For Variable name type: HOME

	For Variable path type: C:\Users\your-user-folder\

	Click OK

The Output From Git Commands Look Weird (ANSI Escape Codes)

This happens if you have any of the color.* git options set to true (or always). SublimeGit tries to remove the colors on everything, but sometimes one slip through. If you see one in the wild, please report it at support@sublimegit.net.

To make sure that you don’t get the escape codes in SublimeGit, but still get pretty colors when using git from the terminal, we recommend setting the color.* config values to auto like so:

git config --global color.ui auto
git config --global color.branch auto
git config --global color.diff auto
git config --global color.status auto

After which the relevant part of your .gitconfig will look something like this:

[color]
 diff = auto
 status = auto
 branch = auto
 ui = auto

More Information

Here are some random links for getting started with, and using git and Sublime Text 2.

Git

For getting started with git, the book “Pro Git” by Scott Chacon is chock-full of great information, and it’s available for free: http://git-scm.com/book

The git reference manual is a great place to look up specifics for commands: http://git-scm.com/docs

PeepCode also has a couple of good screencasts on git:

	https://peepcode.com/products/git

	https://peepcode.com/products/advanced-git

For a more academic and in-depth treatment, which can be very helpful for wrapping your head around git, see: http://www.sbf5.com/~cduan/technical/git/

And last, but certainly not least, the help section on GitHub is excellent, and should be in your bookmarks: https://help.github.com/

Git-flow

The original blog-post on the git-flow branching model is here: http://nvie.com/posts/a-successful-git-branching-model/

Sublime Text 2

Please see the Sublime Text 2 Support page: http://www.sublimetext.com/support

The Sublime Text Forum is also very active, and helpful: http://www.sublimetext.com/forum/

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | V

A

 	
 	Add Current File (command)

 	Add Remote (command)

 	
 	Add Tag (command)

 	Amend Commit (command)

 	Apply Stash (command)

B

 	
 	Blame (command)

C

 	
 	Checkout (command)

 	Checkout Commit (command)

 	Checkout Current File (command)

 	
 	Checkout New Branch (command)

 	Commit (command)

 	Custom Command (command)

D

 	
 	Diff (command)

 	
 	Diff Cached (command)

F

 	
 	Fetch (command)

G

 	
 	Git-flow: Feature Finish (command)

 	Git-flow: Feature Start (command)

 	Git-flow: Hotfix Finish (command)

 	
 	Git-flow: Hotfix Start (command)

 	Git-flow: Release Finish (command)

 	Git-flow: Release Start (command)

 	Gitk (command)

H

 	
 	Help (command)

I

 	
 	Init (command)

L

 	
 	Legit: Branches (command)

 	Legit: Graft (command)

 	Legit: Harvest (command)

 	Legit: Publish (command)

 	
 	Legit: Sprout (command)

 	Legit: Switch (command)

 	Legit: Sync (command)

 	Legit: Unpublish (command)

 	Log (command)

M

 	
 	Merge (command)

P

 	
 	Pop Stash (command)

 	Pull (command)

 	
 	Pull Current Branch (command)

 	Push (command)

 	Push Current Branch (command)

Q

 	
 	Quick Add (command)

 	Quick Commit (command)

 	Quick Commit Current File (command)

 	
 	Quick Log (command)

 	Quick Log Current File (command)

 	Quick Status (command)

R

 	
 	Remote (command)

S

 	
 	Show (command)

 	Snapshot (command)

 	Stash (command)

 	
 	Status (command)

 	SublimeDocumentation (command)

 	SublimeVersion (command)

 	Switch Repo (command)

T

 	
 	Tag (command)

V

 	
 	Version (command)

 _static/up.png

_static/up-pressed.png

_images/tutorial21.png
o *git-status*: djangotut — djangotut
OPEN FILES tus*: djangotut
“git-status
FOLDERS 6417609 Changes settings
¥ diangotut

¥ mysi
’ Staged changes:
| Added polls/_init_.py
ttings.py Added polls/models.py
urls.py Added polls/tests.py
wsgipy Added polls/views.py
¥ polls 1

_init_py

_init_py
models.py
tests.py

ews.py
gitignore
manage.py
requirements.txt

supertk s
u

SublimeGit Status.

_images/tutorial31.png
800 “git-status*: djangotut — djangotut

OPEN FILES “git-status*: djangotut
origin @ gitegithub. con: SublimeGit/djangotut. git
FOLDERS i
¥ diangotut e123faa Adds initial polls app
¥ mysite
init_py.
p— Pothing to comnit (working directory clean)
urls.py
wsgipy
¥ polis
init_py,
models.py
tests.py
views.py
gitignore super+k s
manage.py. u

Pushing to gitegithub.com:SublimeGit/djangotut.git

To gitegithub. con: SublimeGit/djangotut. git

* [new branch] master -> master

updating local tracking ref 'refs/remotes/origin/master’
Branch master set up to track remote branch master from origin

Line 6, Column 1 TabSize: 4 SublimeGit Status

_images/tutorial13.png
o COMMIT_EDITMSG — djangotut

OPEN FILES tus*: djangotut
“git-status*: djangotut

COMMIT_EDITMSG

FOLDERS
¥ djangotut
v mysite

_init_py

MMIT_EDITMSG

Initial comit of the Django Tutorial

FLTER Changes- to- be- committed:

urls.py

wsgipy

file:
file:

) file:
requirements.txt file:

gitignore
manage.py

file:
file:
file:

.gitignore
manage. py
mysite/__init_.py
mysite/settings.py
mysite/urls.py
mysite/wsgi.py
requirenents. txt

SublimeGit

ommit Mess:

_images/tutorial23.png
806

git-status: djangotut — djangotut o

init_py.
settings.py
urls.py
wsgipy

init_py,
models.py
tests.py.
views.py
gitignore
manage.py
requirements.txt

Line 5, Column 1

“git-status*: djangotut

gar
Git: Add Remote

Set Syntax: JSON Generic Array

Set Syntax: JSON Generic Array Elements
Git: Add Current File

Package Control: Add Repository
Git-flow: Feature Start

Git-flow: Hotfix Start

Git-flow: Release Start

GitHub: Copy Starred Gist to Clipboard
GitHub: Open Starred Gist in Browser
GitHub: Open Starred Gist in Editor
Git-flow: Feature Start From Commit
Git-flow: Hotfix Start From Commit
Git-flow: Release Start From Commit
GitHub: Copy Gist to Clipboard
GitHub: Copy Gist URL to Clipboard

TabSize:4 SublimeGit Statws

_images/tutorial22.png
o
OPEN FILES
“git-status
FOLDERS
¥ djangotut
v mysi
_init_py
ttings.py
urls.py
wsgipy
¥ polls
_init_py
models.py
tests.py
ews.py
gitignore
manage.py
requirements.txt

git-status: djangotut — djangotut

tus*: djangotut

6417609 Changes settings

Untracked files:
polls/_init_.py
polls/models. py
polls/tests.py
polls/views.py

supertk s
u

SublimeGit Status.

_images/tutorial10.png
o
OPEN FILES
“git-status
FOLDERS
¥ djangotut
v mysi
_init_py
settings.py
urls.py
wsgipy
gitignore
manage.py

requirements.txt

git-status: djangotut — djangotut

tus*: djangotut

nothing comnitted (yet)

Untracked files:
.gitignore
manage. py
mysite/__init_.py
mysite/settings.py
mysite/urls.py
mysite/wsgi.py
requirenents. txt

supertk s
u

SublimeGit Status.

_images/tutorial07.png
o *git-status*: djangotut — djangotut
OPEN FILES tus*: djangotut
“git-status

FOLDERS 2 nothing comitted (yet)
¥ diangotut

- 4 Untracked files:

manage.py

mysite/__init_.py
mysite/_init_.pyc

i mysite/settings.py

wsgipy mysite/settings.pyc
manage.py 1 mysite/urls.py
e mysite/wsgl.py

1 requirenents. txt

_init_py
settings.py

gnore pattern: [mysite/_init__.pyq

Line 7, Column 1 SublimeGit Status.

_images/tutorial02.png
[S Y . 3 PV 7 SRS ———

OPEN FILES
FOLDERS
v djangotut (gin |
v mysite Git: Init

e Git: Checkout New Branch

T SublimeGit: Install License

ey Git-flow: Init With Defaults

ey Git: Snapshot

fersion
Git-flow: Feature Finish

Git-flow: Hotfix Finish

Git-flow: Release Finish

Git: Pull Current Branch

Git: Push Current Branch

Package Control: Install Package
SublimeGit: Documentation
SublimeGit: Buy License

View: Toggle Open Files in Side Bar
2z:AAAPackageDev: New Plugin

requirements.txt

_images/tutorial29.png
[s) *git-status*: djangotut — djangotut
OPEN FLES st diangowt
git-status: djangotut o
FOLDERS 2 gpushd
¥ diangotut Git: Push Current Branch
¥ mysite 4
T Nothing to comnit (working directory clean)
tings.py
urs oy
wsgioy
¥ polls
_init_py
models.py

tests.py

LY supertk s

gitignore 1 u
manage.py
requirements.txt

Line 5, Column 1 SublimeGit Status.

_images/tutorial03.png
X UM T Y 7 P =Y. . O —

OPEN FILES
FOLDERS
¥ djangotut
¥ mysite
_init_py
settings.py

urls.py.
wsgipy

manage.y

requirements.txt

Directory: | /Users/mp/Desktop/djangotut]

_images/tutorial20.png
800 *git-diff*: mysite/settings.py — djangotut

“git-diff*: mysite/settings.py
git-status: djangs

MANAGERS. = ADMINS
_init_py DATABASES = {
settings.py ‘default’: {

The following settings are ot used with-sqlite3:
PUSER’: ",
SR "PASSWORD': -,
views.py ALLOVED_HOSTS =[]
gitignore # http://en.wikipedia. org/wiki/List_of _tz_zones_by_nane
ey # although ot all-choices may-be-available on all operating systes.

p——— #In-a Windows - environment this- must be- set-to your- systen tine zone.

Language-code for- this- installation. AL choices- can-be-found here:

http: //www. 118nguy. con/unicode/1anguage-identifiers. htnl
ROOT_URLCONF = "mysite.urls’

WSGI_APPLICATION = 'mysite.wsgi.application’

TEMPLATE_DIRS = (

Put strings here, like "/hone/html/django_tenplates” or- "
Always-use- forward- slashes, even-on Windows.

Line 45, Column 61 Spaces: 4 SublimeGit Diff

nav.xhtml

 Table of Contents

 		SublimeGit Documentation

 		Quickstart

 		Prerequisites

 		Sublime Text 2 or 3

 		Git

 		Git Configuration

 		Installation

 		Using Package Control

 		Installing From Package

 		Configuration

 		Git Executable Path

 		Enabling or Disabling Plugins

 		Adding a License

 		Automatic

 		Manual

 		Using SublimeGit

 		Tutorial

 		Getting Set Up

 		Initialize a Repository

 		Adding Content

 		The Status View

 		Ignoring Files

 		Adding Files

 		Other Ways to Add Files

 		Committing

 		Aborting a Commit

 		Staging Changes

 		Viewing Diffs

 		Opening a File

 		Unstaging Files

 		Sharing Our Project With the World

 		Adding a Remote

 		Pushing

 		Branching

 		Stashing

 		Finding Help

 		Further Reading

 		Commands Reference

 		Creating and Switching Repositories

 		Status

 		Diffs

 		Blame

 		Adding files

 		Checking out files

 		Committing

 		Logs

 		Branching and Merging

 		Working with Remotes

 		Fetching and Pulling

 		Pushing

 		Stashing

 		Tags

 		Custom Commands

 		Browsing Documentation

 		SublimeGit

 		Gitk

 		Plugins

 		Le-git

 		Branches

 		Remotes

 		Gitflow

 		Features

 		Releases

 		Hotfixes

 		Keyboard Shortcuts

 		Status View

 		Movement

 		Staging

 		Committing

 		Stashes

 		Blame View

 		Diff View

 		Movement

 		Context

 		Staging

 		Customizations

 		Custom Commands

 		Keyboard Shortcuts

 		Run a Command (e.g. Git: Status)

 		Add a Key Binding to a Command in the Status View

 		Jump to a Specific Section in the Status View

 		Color Scheme

 		Setting a Different Color Scheme

 		Customizing Individual Colors

 		Troubleshooting

 		SublimeGit Can't Find Git

 		Nothing Happens When Pushing, Pulling or Fetching From a Remote

 		Solution by Albert Santini (Issue #3)

 		Solution by Henry Mei (Issue #15)

 		Solution by Mario Basic (Issue #59)

 		The Output From Git Commands Look Weird (ANSI Escape Codes)

 		More Information

 		Git

 		Git-flow

 		Sublime Text 2

_images/tutorial28.png
800 “git-status*: djangotut — djangotut

OPEN FILES *git-status*: djangotut

master
FOLDERS e123faa Adds initial polls app
¥ diangotut
v mysite
_init_py
settings.py
urls.py
wsgipy
¥ polls
_init_py.
models.py

Pothing to comnit (working directory clean)

tests.py
sy supertk s

gitignore u

manage.py k

fatal: The current branch master has no upstream branch
To push the current branch and set the remote as upstream, use

git push --set-upstrean origin master

Line 5, Column 1; On branch master TabSize:a SublimeGit Statws

_images/tutorial11.png
o
OPEN FILES
“git-status
FOLDERS
¥ djangotut
v mysi
_init_py
settings.py
urls.py
wsgipy
gitignore
manage.py

requirements.txt

git-status: djangotut — djangotut

tus*: djangotut

nothing comnitted (yet)

Untracked files:
.gitignore
manage. py
mysite/__init_.py
mysite/settings.py
mysite/urls.py
mysite/wsgi.py
requirenents. txt

supertk s
u

SublimeGit Status.

_images/tutorial12.png
o COMMIT_EDITMSG — djangotut
OPEN FILES tus*: djangotut MMIT_EDITMSG
“git-status*: djangotut

COMMIT_EDITMSG

FOLDERS
¥ djangotut
v mysite

_init_py,

FLTER Changes- to- be- committed:
urls.py

wsgipy

file: .gitignore
file: manage.py

file: mysite/_init_.py
requirements.txt T

gitignore
manage.py
mysite/settings.py
file: mysite/urls.py

file: mysite/wsgi.py
file: requirements. txt

SublimeGit Commit Mess:

_images/tutorial16.png
o *git-status*: djangotut — djangotut
OPEN FILES tus*: djangotut
“git-status
FOLDERS 351785 Initial comnit of the Django Tutorial
¥ diangotut

v mysi

’ Untracked files:
polls/_init_.py
polls/models. py

urls.py polls/tests.py
wsgioy polls/views.py

¥ polls 1

_init_py
ttings.py

Changes:
Modified mysite/settings.py

_init_py
models.py
tests.py

ews.py
gitignore
manage.py
requirements.txt

supertk s
u

SublimeGit Status.

_images/tutorial15.png
800 “git-status*: djangotut — djangotut
OPEN FILES “git-status*: djangotut

master
3517854 Initial comnit of the Django Tutorial

FOLDERS

¥ diangotut

N '"T:L oy Pothing to comnit (working directory clean)

settings.py
urls.py
wsgipy
gitignore
manage.py.

requirements.txt

[master (root-comnit) 351785a] Initial comnit of the Django Tutorial
7 files changed, 217 insertions(+)

create mode 100644 .gitignore

create mode 100644 manage.py

create mode 188644 mysite/__init__.py

create mode 188644 mysite/settings.py

Line 5, Column 1 TabSize: 4 SublimeGit Status

_images/tutorial14.png
eo0o *git-status*: djangotut — djangotut

“git-status*: djangotut

master
nothing conmitted (yet)

v Staged changes

g | Added -gitignore
etingeay Added manage.py
Added mysite/_init_.py
i Added mysite/settings.py
wsgipy 5 Added mysite/urls.py
gitignore Added mysite/wsgi.py
i, Added requirenents. txt

requirements.txt

Aborting commit due to empty commit message.

Line 5, Column 1 TabSize: 4 SublimeGit Status

_images/tutorial05.png
[S Y . 3 PV 7 SRS ———

OPEN FILES
FOLDERS
v djangotut [gs |
MG Git: Show
SRy Git: Snapshot
e Git: Stash .
"m;: Git: Status.
sty Git: Switch Repo
requirements.txt Git: Apply Stash

Git: Pop Stash

Git: Quick Status

Git-flow: Feature Start

Git-flow: Hotfix Start

Git-flow: Release Start

Git-flow: Feature Start From Commit
Git-flow: Hotfix Start From Commit
Git-flow: Release Start From Commit
Set Syntax: SublimeGit Show

Set Syntax: SublimeGit Status

_images/tutorial06.png
o *git-status*: djangotut — djangotut
OPEN FILES tus*: djangotut
“git-status

FOLDERS nothing comitted (yet)
¥ djangotut

- 4 Untracked files:

manage.py

mysite/__init_.py
mysite/_init_.pyc

—i mysite/settings.py

wsgipy mysite/settings.pyc
manage.py 1 mysite/urls.py
e mysite/wsgl.py

1 requirenents. txt

_init_py
settings.py

supertk s
u

Line 5, Column 1 SublimeGit Status.

_images/tutorial17.png
o *git-status*: djangotut — djangotut
OPEN FILES tus*: djangotut
“git-status
FOLDERS 351785 Initial comnit of the Django Tutorial
¥ diangotut

v mysi

’ Untracked files:
polls/_init_.py
polls/models. py

urls.py polls/tests.py
wsgioy polls/views.py

¥ polls 1

_init_py
ttings.py

Changes:
Modified mysite/settings.py

_init_py
models.py
tests.py

ews.py
gitignore
manage.py
requirements.txt

supertk s
u

Line 12, Co SublimeGit Status.

_images/tutorial04.png
[U 75 F P SO —

‘OPEN FILES
FOLDERS
¥ djangotut
¥ mysite
_init_py
settings.py

urls.py.
wsgipy

manage.py

requirements.txt

Initialized empty Git repository in /Users/mp/Desktop/djangotut/.git/

_images/tutorial26.png
o *git-status*: djangotut — djangotut
OPEN FILES tus*: djangotut
git-status*: djangotut
FOLDERS 2 e123faa Adds initial polls app
¥ diangotut
v mysite
o Nothing to comit (working directory clean)
tings.py
urls.py
wsgioy
¥ polis
init_py.
models.py

tests.py

LY supertk s

gitignore 1 u
manage.py
requirements.txt

ur: [gitegi thub. com: SublimeGit/djangotut. git

Line 5, Column 1 SublimeGit Status.

_images/tutorial30.png
o *git-status*: djangotut — djangotut
OPEN FILES tus*: djangotut
git-status*: djangotut
FOLDERS 2 e123faa Adds initial polls app
¥ diangotut
v mysite
o Nothing to comit (working directory clean)
tings.py
urls.py
wsgioy
¥ polis
init_py.
models.py
tests.py
RS super+k s
gitignore 1 u
manage.py.
requirements.txt

Remote branch: naster]

Line 5, Column 1 SublimeGit Status.

_images/tutorial18.png
800 *git-diff*: mysite/settings.py — djangotut

“git-diff*: mysite/settings.py
git-status: djangs

MANAGERS. = ADMINS
_init_py DATABASES = {
settings.py ‘default’: {

The following settings are ot used with-sqlite3:
PUSER’: ",
SR "PASSWORD': -,
views.py ALLOVED_HOSTS =[]
gitignore # http://en.wikipedia. org/wiki/List_of _tz_zones_by_nane
ey # although ot all-choices may-be-available on all operating systes.

p——— #In-a Windows - environment this- must be- set-to your- systen tine zone.

Language-code for- this- installation. AL choices- can-be-found here:
http: //www. 118nguy. con/unicode/1anguage-identifiers. htnl
INSTALLED_APPS = (
*django. contrib. sites’,
*django. contrib.messages’,
*django. contrib. staticfiles’,

Line 37, Column 61 s SublimeGit Diff

_images/tutorial01.png
[U 75 F P SO —

OPEN FILES
FOLDERS
¥ djangotut
¥ mysite
_init_py
settings.py

urls.py.
wsgipy

manage.py

requirements.txt

_images/tutorial19.png
o
OPEN FILES
“git-status
FOLDERS
¥ djangotut
v mysi
_init_py
ttings.py
urls.py
wsgipy
¥ polls
_init_py
models.py
tests.py
views.py
gitignore
manage.py
requirements.txt

[} settings.py — djangotut

tus*: djangotut

DEBUG. - True
‘TEMPLATE_DEBUG- - DEBUG

ADMINS =
)
MANAGERS - ADMINS
DATABASES - {
*default’:
"ENGINE': - *django. db. backends. sqlite3’,
"NAME’: - 'db. salite’,
"USER’: "7,
"PASSHORD

"HOST' :
*PORT"

ALLOWED_HOSTS = []

Spaces: 4

Python Diango

_static/comment-close.png

_images/tutorial24.png
o *git-status*: djangotut — djangotut
OPEN FILES tus*: djangotut
git-status*: djangotut
FOLDERS 2 e123faa Adds initial polls app
¥ diangotut
v mysite
o Nothing to comit (working directory clean)
tings.py
urls.py
wsgioy
¥ polis
init_py.
models.py

tests.py

LY supertk s

gitignore 1 u
manage.py
requirements.txt

ame: [origin

Line 5, Column 1; On branch master SublimeGit Status.

_images/tutorial08.png
o *git-status*: djangotut — djangotut
OPEN FILES tus*: djangotut
“git-status

FOLDERS 2 nothing comitted (yet)
¥ diangotut

- 4 Untracked files:

manage.py

mysite/__init_.py
mysite/_init_.pyc

i mysite/settings.py

wsgipy mysite/settings.pyc
manage.py 1 mysite/urls.py
e mysite/wsgl.py

1 requirenents. txt

_init_py
settings.py

lgnore pattern: | . py¢

Line 7, Column 1 SublimeGit Status.

_static/minus.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

